Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Shan Gao ${ }^{\text {a }}$ and Seik Weng $\mathbf{N g}^{\text {b }}$ *

${ }^{\text {a }}$ College of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, People's Republic of China, and ${ }^{\text {b }}$ Department of Chemistry, University of Malaya, Kuala Lumpur 50603, Malaysia

Correspondence e-mail: seikweng@um.edu.my

Key indicators

Single-crystal X-ray study
$T=295 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.007 \AA$
Disorder in main residue
R factor $=0.066$
$w R$ factor $=0.184$
Data-to-parameter ratio $=12.1$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2006 International Union of Crystallography Printed in Great Britain - all rights reserved

Aqua(3-carboxylatophenoxyacetato- κ O)bis(1,10 -phenanthroline- $\kappa^{2} N, N^{\prime}$)manganese(II) tetrahydrate

The dicarboxylate ligand in the title compound, $\left[\mathrm{Mn}\left(\mathrm{C}_{9} \mathrm{H}_{6}-\right.\right.$ $\left.\left.\mathrm{O}_{5}\right)\left(\mathrm{C}_{12} \mathrm{H}_{8} \mathrm{~N}_{2}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)\right] \cdot 4 \mathrm{H}_{2} \mathrm{O}$, coordinates in a monodentate manner to the $\mathrm{Mn}^{\mathrm{II}}$ atom through the carboxylate group on the benzene ring. The two O atoms in the octahedral configuration around the $\mathrm{Mn}^{\mathrm{II}}$ atom are cis to each other. Extensive hydrogen bonding leads to a three-dimensional network.

Comment

The carboxyphenoxyacetate ligand is a multidentate ligand with both rigid and flexible parts. As part of an investigation of carboxyphenoxyacetate complexes, we present here the crystal structure of the title $\mathrm{Mn}^{\mathrm{II}}$ complex, (I).

(I)

The molecular structure of (I) is shown in Fig. 1. The bis-(phenanthroline)-chelated $\mathrm{Mn}^{\mathrm{II}}$ complex of 3-carboxylphenoxyacetate exists as a monoaqua-coordinated tetrahydrate. The octahedral coordination geometry around the $\mathrm{Mn}^{\mathrm{II}}$ atom is similar to that in the bis(phenanthroline)-chelated $\mathrm{Mn}^{\mathrm{II}}$ complex with 4-carboxyphenoxyacetate (Huo et al., 2005). The 3-carboxylphenoxyacetate dianion coordinates in a monodentate fashion to the $\mathrm{Mn}^{\mathrm{II}}$ atom through the carboxylate group on the benzene ring. The carboxylate group of the oxyacetate arm does not coordinate, but it engages in hydrogen-bonding interactions (Table 2). The two coordinated O atoms are cis to each other. The coordinated bond distances and angles are normal compared with those for reported related structures. Extensive hydrogen bonds (Table 2) lead to a three-dimensional network.

Experimental

Manganese dichloride hexahydrate ($0.47 \mathrm{~g}, 2 \mathrm{mmol}$), 1,10-phenanthroline $(0.80 \mathrm{~g}, 4 \mathrm{mmol})$ and 3-carboxyphenoxyacetic acid $(0.39 \mathrm{~g}$, 2 mmol) were dissolved in a small volume of hot water. The clear solution was set aside for several days to obtain yellow prismatic

Received 7 November 2005 Accepted 21 November 2005 Online 23 December 2005
crystals of (I). Analysis calculated for $\mathrm{C}_{33} \mathrm{H}_{32} \mathrm{MnN}_{4} \mathrm{O}_{10}$: C $56.64, \mathrm{H}$ 4.61, N 8.01\%; found: C 56.67, H 4.59, N 7.99\%.

Crystal data

$\left[\mathrm{Mn}\left(\mathrm{C}_{9} \mathrm{H}_{6} \mathrm{O}_{5}\right)\left(\mathrm{C}_{12} \mathrm{H}_{8} \mathrm{~N}_{2}\right)_{2}-\right.$
$\left.\left(\mathrm{H}_{2} \mathrm{O}\right)\right] \cdot 4 \mathrm{H}_{2} \mathrm{O}$
$M_{r}=699.57$
Triclinic, $P \overline{1}$
$a=8.123(2) \AA$
$b=14.134(3) \AA$
$c=15.655(3) \AA$
$\alpha=110.51(3){ }^{\circ}{ }^{\circ}$
$\beta=90.95(3)$
$\gamma=104.70(3)^{\circ}$
$V=1617.3(8) \AA^{\circ}$
$Z=2$
$D_{x}=1.437 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 14540 reflections
$\theta=3.1-27.5^{\circ}$
$\mu=0.47 \mathrm{~mm}^{-1}$
$T=295$ (2) K
Block, yellow
$0.38 \times 0.26 \times 0.20 \mathrm{~mm}$

Data collection

Rigaku R-AXIS RAPID IP diffractometer

ω scans

Absorption correction: multi-scan (ABSCOR; Higashi, 1995)
$T_{\text {min }}=0.629, T_{\text {max }}=0.911$
12644 measured reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.066$
$w R\left(F^{2}\right)=0.184$
$S=1.02$
5673 reflections
470 parameters
H -atom parameters constrained

5673 independent reflections 3748 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.041$
$\theta_{\text {max }}=25.0^{\circ}$
$h=-8 \rightarrow 9$
$k=-16 \rightarrow 16$
$l=-18 \rightarrow 18$

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.1002 P)^{2}\right. \\
& +0.567 P] \\
& \text { where } P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }=0.001 \\
& \Delta \rho_{\max }=0.58 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=-0.37 \mathrm{e} \AA^{-3}
\end{aligned}
$$

Table 1
Selected geometric parameters $\left({ }^{(},{ }^{\circ}\right)$.

$\mathrm{Mn} 1-\mathrm{O} 1$	$2.099(3)$	$\mathrm{Mn} 1-\mathrm{N} 2$	$2.269(3)$
$\mathrm{Mn} 1-\mathrm{O} 1 w$	$2.177(3)$	$\mathrm{Mn} 1-\mathrm{N} 3$	$2.284(4)$
$\mathrm{Mn} 1-\mathrm{N} 1$	$2.268(3)$	$\mathrm{Mn} 1-\mathrm{N} 4$	$2.267(4)$
$\mathrm{O} 1-\mathrm{Mn} 1-\mathrm{O} 1 w$	$86.5(1)$	$\mathrm{O} 1 w-\mathrm{Mn} 1-\mathrm{N} 4$	$87.5(1)$
$\mathrm{O} 1-\mathrm{Mn} 1-\mathrm{N} 1$	$104.3(1)$	$\mathrm{N} 1-\mathrm{Mn} 1-\mathrm{N} 2$	$73.4(1)$
$\mathrm{O} 1-\mathrm{Mn} 1-\mathrm{N} 2$	$87.4(1)$	$\mathrm{N} 1-\mathrm{Mn} 1-\mathrm{N} 3$	$159.7(1)$
$\mathrm{O} 1-\mathrm{Mn} 1-\mathrm{N} 3$	$90.4(1)$	$\mathrm{N} 1-\mathrm{Mn} 1-\mathrm{N} 4$	$93.8(1)$
$\mathrm{O} 1-\mathrm{Mn} 1-\mathrm{N} 4$	$161.3(1)$	$\mathrm{N} 2-\mathrm{Mn} 1-\mathrm{N} 3$	$93.7(1)$
$\mathrm{O} 1 w-\mathrm{Mn} 1-\mathrm{N} 1$	$93.9(1)$	$\mathrm{N} 2-\mathrm{Mn} 1-\mathrm{N} 4$	$102.6(1)$
$\mathrm{O} 1 w-\mathrm{Mn} 1-\mathrm{N} 2$	$164.1(1)$	$\mathrm{N} 3-\mathrm{Mn} 1-\mathrm{N} 4$	$73.5(1)$
$\mathrm{O} 1 w-\mathrm{Mn} 1-\mathrm{N} 3$	$101.1(1)$		

Table 2
Hydrogen-bond geometry ($\AA^{\circ},{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	D-H	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 1 w-\mathrm{H} 1 w 1 \cdots \mathrm{O} 2 w$	0.85	1.96	2.712 (7)	147
$\mathrm{O} 1 w-\mathrm{H} 1 w 2 \cdots \mathrm{O} 2$	0.85	1.91	2.638 (5)	143
$\mathrm{O} 2 w-\mathrm{H} 2 w 1 \cdots \mathrm{O} 3 w$	0.88	2.19	2.83 (1)	129
$\mathrm{O} 3 w-\mathrm{H} 3 w 1 \cdots 4^{\text {i }}$	0.90	1.82	2.23 (2)	105
$\mathrm{O} 4 w-\mathrm{H} 4 w 1 \cdots \mathrm{O} 4$	0.87	1.64	2.39 (2)	144
$\mathrm{O} 5 w-\mathrm{H} 5 w 1 \cdots \mathrm{O}^{\prime}$	0.86	1.80	2.62 (2)	159

Symmetry code: (i) $x-1, y-1, z$.
The C-bound H atoms were positioned geometrically ($\mathrm{C}-\mathrm{H}=0.93$ or $0.97 \AA$) and were included in the refinement in the riding-model

Figure 1
ORTEPII plot of (I). Displacement ellipsoids are drawn at the 30% probability level, and H atoms are drawn as spheres of arbitrary radii. The minor disordered component has been omitted for clarity.
approximation, with $U_{\text {iso }}(\mathrm{H})$ set to 1.2 times $U_{\text {eq }}(\mathrm{C})$. The H atoms of the water molecules were placed at chemically sensible positions on the basis of hydrogen bonds but they were not refined; their displacement parameters were similarly tied. The water molecules were restrained to behave in an approximately isotropic manner. All $\mathrm{H} \cdots \mathrm{H}$ contacts exceed $2 \AA$. The oxyacetate arm of the dianion is disordered over two positions; the occupancy factors refined to 0.44 (1) and 0.56 (1). A number of restraints were imposed. The O3C32 and O3-C-32' distances were restrained to within $0.01 \AA$ of each other, as were the $\mathrm{C} 32-\mathrm{C} 33$ and $\mathrm{C} 32^{\prime}-\mathrm{C} 33^{\prime}$ pair. The four $\mathrm{C}-\mathrm{O}$ distances of the $-\mathrm{CO}_{2}$ portion were also restrained in this manner; owing to this restraint, the electrons in the portion are assumed to be delocalized. The vibrations of the disordered atoms were restrained to behave in a nearly isotropic fashion.

Data collection: RAPID-AUTO (Rigaku, 1998); cell refinement: RAPID-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPII (Johnson, 1976); software used to prepare material for publication: SHELXL97.

We thank the National Natural Science Foundation of China (No. 20101003), the Scientific Fund for Remarkable Teachers of Heilongjiang Province (No. 1054 G036) and the University of Malaya for supporting this study.

References

Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.
Huo, L.-H., Gao, S., Liu, J.-W., Gu, C.-S., Zhao, H. \& Zhao, J.-G. (2005). Chin. J. Struct. Chem. 24, 334-338.

Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
Rigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.
Rigaku/MSC (2002). CrystalStructure. Rigaku/MSC Inc., 9009 New Trails Drive, The Woodlands, TX 77381-5209, USA.
Sheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Göttingen, Germany.

